Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system.
نویسندگان
چکیده
Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present contextual evidence to support their role in functions unrelated to the Ub-system in prokaryotes. In particular, we show that bacterial ZF-UBP domains are part of a novel cyclic nucleotide-dependent redox signaling system, whereas prokaryotic B-box, AN1 and LIM domains have related functions as partners of diverse membrane-associated peptidases in processing proteins. This information, in conjunction with structural analysis, suggests that these treble clef domains might have been independently recruited to the eukaryotic Ub-system due to an ancient conserved mode of interaction with peptides.
منابع مشابه
Treble clef finger--a functionally diverse zinc-binding structural motif.
Detection of similarity is particularly difficult for small proteins and thus connections between many of them remain unnoticed. Structure and sequence analysis of several metal-binding proteins reveals unexpected similarities in structural domains classified as different protein folds in SCOP and suggests unification of seven folds that belong to two protein classes. The common motif, termed t...
متن کاملThe natural history of ubiquitin and ubiquitin-related domains.
The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence...
متن کاملClassification of the treble clef zinc finger: noteworthy lessons for structure and function evolution
Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the...
متن کاملBioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor
The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...
متن کاملDating divergence of Polystigma and other Sordariomycetes
Studies on the evolutionary history of ascomycetes in terms of time scale will help to understand historical patterns that shape their biodiversity. Until now most of dating studies of ascomycetes have focused on major events in fungal evolution but not on divergence events within smaller groups of fungi e.g. within Sordariomycetes. We used molecular dating to estimate the time of separation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular bioSystems
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2011